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A scenario for the electronic state in the manganese perovskites:
the orbital correlated metal
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Abstract. We propose a novel scenario for the electronic state in the manganese perovskites. We argue that,
at low temperatures and within the ferromagnetic state, the physics of these colossal magnetoresistance
compounds may be characterized by a correlated metallic state near a metal insulator transition where the
orbital degrees of freedom play the main role. This follows from the observation that a two-band degenerate
Hubbard model under a strong magnetic field can be mapped onto a para-orbital single band model. We
solve the model numerically using the quantum Monte-Carlo technique within a dynamical mean field
theory which is exact in the limit of large lattice connectivity. We argue that the proposed scenario may
allow for the qualitative interpretation of a variety of experiments which were also observed in other (early)
transition metal oxides.

PACS. 75.50.Cc Other ferromagnetic metals and alloys – 72.10.Fk Scattering by point defects, dislocations,
surfaces, and other imperfections (including Kondo effect) – 71.20.Be Transition metals and alloys

There is a great current interest in transition metal
compounds displaying colossal magnetoresistance (CMR).
This effect is a strong dependence of resistivity with the
applied magnetic field and is observed experimentally in
compounds such as La1−xAxMnO3, with A = Sr,Ca,Pr.

From the point of view of the electronic structure,
these systems have 3 electrons in a t32g band which due
to a strong Hund’s rule coupling form a core 3/2−spin at
each Mn site and 1− x electrons that go into a quasi two-
fold degenerate eg band. For x = 0 the Manganese atoms
are (+3) and the compound has a nominal filling equal
to 1. Since the bands are originated from partially filled
d-orbitals, on general grounds one expects that correlation
effects should play an important role in the low energy be-
havior, which is indeed the case in many other transition
metal oxides (TMO) with the perovskite structure [1].

At x = 0 the parent compound, LaMnO3, is an insula-
tor with a layer antiferromagnetic structure. The spins are
ferromagnetically ordered within a layer and the antifer-
romagnetic order is in the direction perpendicular to the
layers. (i.e., stacks of alternating ferromagnetic layers.)
Upon doping one finds a transition to a ferromagnetically
ordered state. The basic physics of this class of CMR com-
pounds seems to be qualitatively captured by the “dou-
ble exchange” mechanism proposed by Zener almost fifty
years ago [2]. Anderson and Hasegawa provided an explicit
realization of this mechanism [3], which was subsequently
taken over by de Gennes [4] to demonstrate that, within
a mean field treatment, a 3-dimensional lattice at small
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doping can also show “canted” antiferromagnetic spin or-
der. Kubo and Ohata [5] worked out the mean field theory
of the ferromagnetic Kondo lattice model which was con-
sidered a minimal model for the manganese oxides, and
obtained a large negative magnetoresistance which, how-
ever, was not in good agreement with experiments. More
recently, Furukawa [6] investigated the same model us-
ing a recently developed technique, the dynamical mean
field theory [7], to show that it does account for many
experimental observations, most notably the dependence
of the magnetization with the resistivity. While the stud-
ies on the ferromagnetic Kondo lattice model demonstrate
that the double exchange mechanism is certainly a main
ingredient, additional interactions must be added to ob-
tain a more correct picture [8]. Among those, the dynam-
ical Jahn-Teller effect [9] was studied in detail [10,11] and
there is experimental evidence of strong polaronic effects
in many compounds [12]. In spite of this recent progress,
our understanding of the CMR compounds is still incom-
plete. In particular at low temperature and within the
ferromagnetic (FM) phase, where there are several exper-
imental observations that remain unaccounted for: i) the
enhancement of the density of states near the Fermi en-
ergy with decreasing T observed in photoemission [13,14],
ii) the unusual redistribution of optical spectral weight as
function of the temperature which occurs in the range of
the eV [15], iii) the strong enhancement of the A coeffi-
cient of the T 2 term in the resistivity as function of the
composition in La1−xSrxMnO3 [16], and iv) the suppres-
sion of the resistivity with applied pressure [17].
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These features are not exclusive of the CMR man-
ganese compounds, on the contrary, they have been ob-
served in other (early) transition metal oxides with per-
ovskite structure. For instance, in V2O3, a redistribution
of spectral weight in the optical response [18] and a small
enhancement of the density of states near the Fermi en-
ergy in the photoemission [19] is observed as the temper-
ature is lowered within the paramagnetic metallic phase.
The LaxSr1−xTiO3 system, on the other hand, displays
a notable increase of the T 2 coefficient of the resistivity
as a function of x [20]. Both compounds also show sup-
pression of the resistivity with applied pressure [21,22].
These experiments on early TMO have recently received
a qualitative interpretation within a dynamical mean field
theory of the Hubbard model that becomes exact in the
limit of large dimensions [23–25,7]. The key feature is to
realize that the mean field solution of the Hubbard model
predicts a quasiparticle resonance at the Fermi level when
the system is close to a metal insulator transition (MIT).
Thus, the proximity to a MIT provides with a dynamically
generated small energy scale which allows for the qualita-
tive interpretation of the unusual behavior observed in the
experimental compounds.

In regard of these similarities between some early TMO
and the manganese perovskites, one is motivated to con-
sider the question whether a similar underlying mecha-
nism may be responsible for the low energy behavior. How-
ever, an apparent reason that would mean to immediately
discard this idea is that the observed phenomena in the
CMR compounds occur as they evolve into a ferromag-
netic (FM) state with a magnetic moment that saturates
close to the classical value. Naively one may think that this
is incompatible with the presence of quasiparticles with an
enhanced renormalized mass. Thus, the goal of this paper
is to introduce a model which contains some realistic fea-
tures which where not previously considered, namely local
Coulomb repulsion and band degeneracy [26], and demon-
strate that in the parameter regime relevant for the CMR
manganates the system remains close to a MIT with a dy-
namically generated small energy scale as it goes in to the
fully polarized FM state at low temperatures.

The full Hamiltonian for the CMR compounds has the
following form [10,7]:

H =
∑

〈ij〉,a,b,σ

tabij c†iaσcjbσ − JH
∑
i,a,σ

Sci · sdi + HJ−T

+
∑

i,a,b,σ,σ′

Uabσσ′niaσnibσ′(1− δabδσσ′) (1)

where σ = ±1/2, a, b = 1, 2 are the orbital indexes of
the eg bands, and the local spins 3/2 are described by Sc.
The first two terms define the ferromagnetic Kondo lat-
tice model and give a realization of the DEM while the
third is a Jahn-Teller term that brings in polaronic ef-
fects. The role of the dynamical correlations due to the
local Coulomb repulsion described by the fourth term
still remains largely unaccounted and is a main concern
in this work. Recent resonant photoemission experiments
indicate that the manganese parent compound is in an

intermediate state between a charge transfer and Mott-
Hubbard insulator with U ∼ 3.5 eV [13]. It is important
to point out that this energy is similar to the value of the
ferromagnetic Kondo coupling, which casts some doubts
on the appropriateness of the commonly used simple ferro-
magnetic Kondo lattice. Another important aspect which
we shall consider explicitly here is the orbital degeneracy,
and, as it turns out, we shall see that these degrees of free-
dom will play a crucial role within the proposed scenario.

In order to better focus on the role of local repulsion
and orbital degeneracy we shall simplify the Hamiltonian
(1). Firstly, as we are concerned with the electronic state
in the FM phase we neglect HJ−T . This term is most rel-
evant around and above Tc, but moving deep into the FM
metallic phase its strength rapidly decreases [27,28,10].
Also, well into the FM phase, we can assume the local
spins 3/2 to be uniform and static. Therefore, by means
of the ferromagnetic coupling JH , their main effect on the
conduction electrons is to produce an effective local mag-
netic field hloc as they become polarized under the action
of an implicit external field. Once more, we emphasize that
the driving force of the FM state is in the double exchange
mechanism. It is important to note that the effective local
field, being of electronic origin, may be very strong and is
estimated to be about twice the bandwidth [6].

Thus our effective model Hamiltonian becomes,

Heff =
∑
〈ij〉,a,b

tabij c†iaσcjbσ

+
∑

i,a,b,σ,σ′

Uabσσ′niaσnibσ′(1− δabδσσ′)− hlocmi · si (2)

where m2
i = 1.

It is important to state that our simplified model is not
an alternative to the double exchange mechanism. We are
rather assuming that double exchange is indeed responsi-
ble for the basic physics such as the phase diagram and
some of the CMR behavior, and we are trying to build up
the ingredients which may provide for a qualitative un-
derstanding of the experimental observations mentioned
before. As it turns out, we shall see that the orbital de-
grees of freedom will be playing a crucial role within the
proposed scenario.

We shall solve this model within the dynamical mean
field theory which becomes exact in the limit of large−d,
with d being the number of spatial dimensions. This
limit is equivalent to the limit of large lattice connec-
tivity. As usual, in order to get a non-trivial problem
allowing the itinerant and local terms in the Hamilto-
nian to compete, the hopping is renormalized t → t/

√
d

[29]. We shall assume a semi-circular density of states

ρ0(ε) = 1/(πD)
√

1− (ε/D)2, with the half bandwidth

D = 1 and D = 2
√

2t. This ρ0 is realized in a Bethe
lattice, and our choice is motivated by both, simplicity
and the realistic finite bandwidth that it provides.

In order to numerically solve the model we shall make
some further non crucial simplifications. Firstly, we take
Uabσσ′ = U . Secondly, we set tabij = −t ∀a, b, as on
general grounds, one may expect that the off-diagonal
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hopping amplitudes have a similar magnitude as compared
to the diagonal ones. This choice actually forces the sys-
tem to remain orbitally disordered even at zero doping;
while if we choose taa 6= tab, we would have an orbitally
ordered state (analogous to an AFM) at zero doping with
a small ordering temperature T orbN ≈ 4[(taa)2 − (tab)2]/U
[23]. In any case, one should keep in mind that in the low
doping limit our effective model Hamiltonian is no longer
applicable for the CMR compounds since the Jahn-Teller
splitting becomes relevant. It is important to emphasize
that our choice of a single value for the different hopping
amplitudes is made just for simplicity. The main role of
the off-diagonal hopping is to contribute to the stability
of the para-orbital state that we shall encounter latter on.
On the other hand, one should also realize that there is
a second, and possibly more important, feature that as-
sures the stability of the disordered orbital state, namely,
the rather large doping x & 0.175, which is experimen-
tally necessary for the CMR state to occur. Doping an
ordered Mott insulator favours disordered states, which is
a familiar fact from the physics of the high Tc supercon-
ductors. In the usual one band Hubbard model one finds
a spin paramagnetic state upon doping the antiferromag-
netic state at x = 0, while in our case, since the orbital
degrees of freedom of our Hamiltonian are playing a role
analogous to the spin, it is an orbitally disordered state
that results upon sufficient doping. Thus, it is this second
and important effect what actually renders our simplify-
ing choice of a single valued hopping tabij = t non-crucial,
as any non-extremely asymmetric choice for the hopping
amplitudes will leave our results unmodified.

The Hamiltonian can now be mapped onto its asso-
ciated impurity problem (a degenerate Anderson impu-
rity in a magnetic field), which is supplemented with a
self-consistency condition that enforces the translational
invariance [30–32]. The self-consistency condition reads,

[G0
σa(z)]−1 = z + µ− σhloc − t

2[Gσa(z) +Gσb(z)] (3)

where G0 and G denote local Green functions, and µ the
chemical potential. It should be now clear from equa-
tion (3) how the role of the off-diagonal hopping that we
discussed above is to provide frustration in orbit space,
thus favoring the stability of a para-orbital (orbital disor-
dered) state. From the equation we see that the electronic
mean field at each site is the average of both orbital re-
action fields t2Gσa and t2Gσb. This situation is in close
analogy with the spin-frustrated two sublattice model in-
troduced in reference [23].

We numerically solve the model using a quantum
Monte-Carlo technique [32–34]. To demonstrate that the
model remains near a MIT as it goes into the FM phase
we shall compute the mass renormalization m∗/m. In the

limit of large dimensions the self-energy Σ = G0−1
−G−1

is local, thus, m∗/m = 1 − ∂Σ/∂ω. Since our results are
obtained at low but finite temperature we shall estimate
this value using m∗/m ≈ 1−Σ(ω1)/ω1, where ω1 = πT is
the first Matsubara frequency. Another quantity that we
shall obtain is 〈n〉 versus µ with n the particle number.
The slope of this curve is proportional to the compressibil-

0.0 0.5 1.0 1.5 2.0
<n>

0.0

2.0

4.0

6.0

8.0

10.0

(m
* /m

)-1

Fig. 1. Renormalized mass as a function of the particle occu-
pation for U = 3, T = 1/8 and hloc = 0, 0.5, 1 (full, dashed,
long dashed).

ity, therefore the (Mott) insulating states will be indicated
by plateaux.

The physics of the two band degenerate Hubbard
model has been recently considered within the dynamical
mean field approach [32,35]. One of the main results was
that, within the paramagnetic state, the phase diagram
shows lines of Mott insulating states at integer fillings for
values of the interaction U > Uc(n) and low enough tem-
peratures. As these lines are approached as a function of
filling, a divergency in the renormalized mass is observed
which signals a correlated metallic state with an effective
Fermi energy which vanishes as (m∗/m)−1. These features
are reminiscent of the solution of the single band Hubbard
model which is known in quite detail [36,7]. The key ob-
servation that we shall demonstrate in this paper is that
the two band model with n ≤ 1 and moderate U is near
a MIT line even as it goes into a saturated FM state.
Thus, irrespective of the magnetization the system always
remains in a correlated metallic state with a reduced effec-
tive Fermi energy ∼ m

m∗
D. The underlaying reason is sim-

ple, as the electrons become fully polarized one may map
the two band model into a single band Hubbard model
where the usual role of the spin indices is played by the
orbital ones. In other words, under a strong magnetic field
the operators carrying a, say, ↓ spin disappear from the
effective Hamiltonian (2).

In Figure 1 we show m∗/m as a function of the num-
ber of particles and different magnetic fields [37]. The most
striking feature is how, for any field, the mass renormaliza-
tion maintains its divergent behavior when 〈n〉 → 1 from
below. As we argued above this occurs because the system
crossover from two- to one-band behavior. In particular
note that for the highest hloc the m∗/m plot shows sym-
metry around 〈n〉 = 1 as is the case in a single band model.
Our results predict that the compounds with x & 0.175
should have an m∗/m . 3 which is consistent with the
enhancement observed in experiments on La1−xSrxMnO3

[38].



460 The European Physical Journal B

-6.0 -4.0 -2.0 0.0
µ-(3/2)U

0.0

0.5

1.0

1.5

2.0
<

n>

Fig. 2. Particle occupation as a function of the chemical po-
tential for U = 3, T = 1/8 and hloc = 0, 0.5, 1 (full, dashed,
long dashed).

In Figure 2 we show the number of particles 〈n〉 as a
function of µ for different local magnetic fields. We ob-
serve that plateaux are always present for fillings 〈n〉 = 1
and 2 even in the case of a strong hloc. Since the slope
of the curves is proportional to the compressibility, the
system becomes an insulator at those fillings. In the case
of 〈n〉 = 1 we argued before that under a strong local
magnetic field the Hamiltonian maps onto a half-filled
para-orbital single band model, therefore, the insulating
state corresponds to a Mott-Hubbard insulator for all hloc.
However, the character of the insulating state at 〈n〉 = 2
strongly depends on hloc. For hloc = 0 the state is a Mott
insulator since the bands are both half-filled. On the other
hand, in the polarized state the insulator should be bet-
ter thought of as a band insulator since the bands can
accommodate only one electron each.

The previous discussion relayed heavily on the as-
sumption that for hloc = 1 the system is fully polarized.
Thus, in Figure 3 we plot the relative magnetic moment
〈n↑−n↓〉/〈n↑+n↓〉 versus 〈n〉 at different magnetic fields
in order to check the validity of the assumption. We ob-
serve that at zero field there is no magnetic moment as
expected while for the largest field the magnetic moment
is close to unity which indicates that all the electrons are
almost fully polarized.

It is interesting to comment on the behavior of the
magnetization in the intermediate case [39], which illumi-
nates aspects of the competition between coherence and
magnetization. At small fillings, the correlation effects due
to the on-site repulsion are not important and the mag-
netic moment relative to the particle number is rather
small. As the particle occupation increases the correla-
tion effects become more important (the effective mass
increases) and the magnetic moment grows rapidly due to
the enhanced susceptibility of the correlated metal. This
almost saturated state persist upto filling one and is sur-
prising to observe that this dramatic change in the mag-
netization has almost no noticeable effect on either m∗/m
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Fig. 3. Relative magnetic moment of the conduction electrons
as a function of the particle number for U = 3, T = 1/8 and
hloc = 0, 0.5, 1 (full, dashed, long dashed).

nor the compressibility (Figs. 1 and 2). The orbital de-
grees of freedom are now playing a crucial role in order
to maintain the correlated metallic state. As we fill the
system further, the associated impurity model goes into a
mixed valence state and the enhanced charge fluctuations
have the effect of lowering the magnetic susceptibility. Fi-
nally, approaching 〈n〉 = 2 the repulsive interaction ren-
ders the electrons almost localized in a Mott state and the
polarization grows again due to the large susceptibility of
the almost free moments.

Before closing we would like to make a remark on
whether the double exchange mechanism alone can ac-
count for the large observed values of the dc-resistivity
[40]. The presently proposed scenario basically deals with
the state of the conduction electrons moving in a static
magnetic background provided by the core spins, thus,
is quite independent of the double exchange mechanism
(which is of course responsible for much of the scattering
and the stability of the FM state!). Nevertheless, we note
that since the correlated metallic state occurs rather close
to a MIT, this may imply that an additional (and pos-
sibly important) source of scattering may play a role in
the observed dc-resistivity. This scattering would be asso-
ciated to the orbital degrees of freedom in a mechanism
which could be though of as an “orbital Kondo” effect in
analogy to the usual Kondo scattering that involves the
spin degrees of freedom [41]. This observation follows from
the fact that within the dynamical mean field theory, one
thinks of each lattice site as immersed in a conduction
medium by virtue of the close analogy of the dynami-
cal mean field equations and those of the single impurity
problem [7]. In the case of our particular effective model
for the ferromagnetic state of the CMR compounds, we
showed that the associated local problem, when the states
are fully spin polarized, becomes analogous to a single im-
purity Anderson model, where the role of the usual spin
is being precisely played by the orbital degree of freedom.
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To conclude we have introduced a model that con-
tains realistic features of the perovskite manganese ox-
ides, namely, band degeneracy and strong electronic cor-
relations. We demonstrated that for parameters which are
appropriate for the CMR compounds the system remains
in a correlated metallic state and rather close to a MIT
as it goes into the saturated FM phase at low tempera-
tures. The low energy physics can then be identified with
that of a single band Hubbard model in the proximity of
a MIT. We argued that, in analogy to other perovskite
TMO, this may allow for the qualitative interpretation
of a variety experiments which suggest the existence of a
small energy scale. We identify this energy scale with the
renormalized Fermi energy of the coherent quasiparticle
peak that characterizes the proximity to the MIT in the
dynamical mean field theory of the Hubbard model.

Finally, is interesting to observe that in our proposed
scenario the orbital degrees of freedom are playing a cru-
cial role. This seems to be emerging as a generic fea-
ture of correlated electron systems which contain quasi-
degenerate bands as was recently demonstrated in the
neutron scattering experiments on the classical transition
metal oxide V2O3 [42] and also in YTiO3 [43]. The ap-
plication of similar techniques on the CMR compounds
may serve as an experimental test for the validity of the
scenario proposed in this work.

Useful discussions with M. Altarelli and P. G. Radaelli are
gratefully acknowledged.
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